

Docstore URL Interface Specification

Changes
Introduction

HTTP Methods
DocID replacement
HTTPS
Authentication

The username and password can be provided using HTTP authentication.
The username and password can be set in the cookies:
The username and password can be passed in the URL

Login URL
Options - silent
Options - redir

Return Values
Example Success Response
Example Failure Response

Interface URLs
Docstore Homepage
Docstore Log
Docstore Document Store List

Creating a Docstore
Individual Document Store Homepage
Document Store Keys

Creating a Docstore Key
Document Store Key
Document Store Key values
Document Store Document Types

Creating a Docstore Document Type
Document Store DocType Keys
Document Store Document Type Homepage
Document Store Document Type Keys

Associating a key with a DocType
Document Store Document List

Query String Options
Query Command Types

q – Exact Match
Q – Exact String Match, Case Insensitive
l – Containing String Match
L – Containing String Match, Case Insensitive

1

S - Suggestion match
Range Queries
Query Key Names
Sort Key and Sort Order
Pagination
Alternative Data return format
Additional Key Values to return
Redirect to first document returned - ifl
Submitting a Document

Document Store Document
Delete
Update

Document Store Document Metadata
Document Store Document Keys/Values Data
Document Store Document Key/Value Data
Restart the Web Service

Appendix
Encoding and Decoding Sample Code

in C#:
In Java:

Key Types
Automating Docstore creation using scripts
Docstore Limits

Changes
2026/01/05​ - Added Tokens to Authentication methods
2022/11/11 ​- Added Document Store Key
2022/11/11 ​- Added Document Store Key values
2022/11/11 ​- Added S - Suggestion match

2

Introduction
Docstore provides a RESTful webservice api as a modern interface to query and retrieve
data from the Docstore using standard HTTP and XML (or JSON).

Most of the xml data is returned along with a url to an xsl stylesheet allowing the xml
data to be viewed in a web browser. Although this is convenient, the real power of
Docstore is unlocked when the data is consumed by other Web sites and services. This
document describes the data available for consumption.

HTTP Methods

The HTTP protocol has 4 methods: GET, POST, PUT and DELETE. Most Web page
requests use the GET method, submitting forms or uploading files use the POST method
and the other two are rarely used. A RESTful webservice makes use of all four of these
Methods, mapping them to distinct actions:
Method Action
GET Retrieve the resource
POST Create a new resource
PUT Replace/Update the resource
DELETE Delete the resource

(For more information on REST, see:
http://en.wikipedia.org/wiki/Representational_state_transfer)

Although an excellent idea in theory, in practice it is often inconvenient or impossible to
use any method except GET. To make life easier, Docstore offers a parameter that will
force it to treat a GET request as a POST: treatGetAsPost=true. Any GET request that has
this value in the URL will be treated as a POST request.
E.g.
A HTTP GET request to the url:
https://SERVER:6443/docStore/store/Docstore%20Demo/document/35/key
/Key1/?keyValue=keyValue1&treatGetAsPost=true
Will set the value of Key1 to “keyValue1” for document 35.

DocID replacement

A number of the Interface URLs require the Document ID to be used [DocID], however
this can usually only be discovered using a separate HTTP request, and the parsing of
the returned XML
E.g.
https://SERVER:6443/docStore/store/store1/document/q[bbbbbb]=ccccc
c&q[dddddd]=eeeeee
Will return XML containing <docid>35</docid>, which could then be used in a separate
call to access the stored document:
https://SERVER:6443/docStore/store/Docstore%20Demo/document/35/

3

http://en.wikipedia.org/wiki/Representational_state_transfer
http://m15:6400/docStore/store/store1/document/#q[xxxxx]=yyyyy
http://m15:6400/docStore/store/store1/document/#q[xxxxx]=yyyyy

Docstore provides an alternative url option that resolves the Document ID from key-value
pairs, so the url:
https://SERVER:6443/docStore/store/DOCSTORE1/document/q%5Bkey1%5D=

value1&q%5BdocType%5D=docType1/key/KEYNAME/

would be resolved to the desired url:
https://SERVER:6443/docStore/store/DOCSTORE1/document/123/key/KEYN

AME/

Note: Both the keys and values will need to be percent encoded BUT NOT the =
separators between keys and values, nor the & separator between key value pairs.
Example:
String url = “https://SERVER:6443/docStore/store/DOCSTORE1/document/” +

encodeURIComponent(“q[key1]”) +

“=” + encodeURIComponent(“value1”) +

“&” + encodeURIComponent(“q[docType]”) +

“=” + encodeURIComponent(“docType1”) +

“/key/KEYNAME”;

A sample encodeURIComponent function is listed in the Appendix

HTTPS

HTTPS is available in CHTTPD v4.04 and above which was released with CPPD 6.2.80
By default HTTPS uses the port 6443 and HTTP port 6400.

Authentication

There are several ways to provide credentials to Docstore:

CHTTPD accepts IBM i user credentials: Either username and password or username and
token should be provided. For more information on tokens, see the note in the appendix.

The username and password can be provided using HTTP authentication.

This is the dialog box that pops up when a browser is used to log onto Docstore.
It is also the values that can be passed to the open() method of a
XMLHttpRequest object.

The username and token can be set in the cookies:
(From CHTTPD v4.75 and above)
chttpd.user = USERNAME
chttpd.tokenHex = AABBCCDDEEFF001122334455667788… (See Note 1)

The username and password can be set in the cookies:

4

http://en.wikipedia.org/wiki%2FPercent-encoding
http://server:6400/docStore/store/DOCSTORE1/document/
http://server:6400/docStore/store/DOCSTORE1/document/
http://www.w3schools.com/dom/dom_http.asp

Note: The chttpd.* cookie values were not checked between v2.84 and v4.08
chttpd.user = USERNAME
chttpd.passwordHex = AABBCCDDEEFF0011 (See Note 1)

or
chttpd.user = USERNAME
chttpd.password = PASSWORD

or
CPPD = USERNAME|AABBCCDDEEFF0011 – this is System21 Workspace Single
signon method

or
User = USERNAME
Pass = PASSWORD

The username and token can be passed in the URL
eg:
https://SERVER:6443/diagnostics/?user=USERNAME&token=AABBCCDDEEFF…

The username and password can be passed in the URL

e.g.
https://SERVER:6443/diagnostics/?user=USERNAME&passwordHex=AABBCCDDEEFF001
1

Note 1: The server value “Authentication Key” must be set with a 16 character hex value,
eg: 0E329232EA6D0D73.
Note 2: The password must be hex encoded. The simplest way to get this is to log in as
an administrator and visit:
https://SERVER:6443/diagnostics/?encodeString=PASSWORDTOENCODE
then look for the encodedString value
Note 3: in Javascript the credentials can be passed using:

xhr.setRequestHeader("Authorization", "Basic " + btoa(username + ":" +
password))

Login URL

https://SERVER:6443/login can be used to log into the server with only a result code and
human readable result.

Options - silent
The URL https://SERVER:6443/login/?silent=true does not return the human readable
result.

Options - redir
https://SERVER:6443/login/?redir=http://redir.to/url
The browser session will be redirected to the url specified in the redir parameter.

Note that the url to redirect to should be processed with encodeURIComponent() or
similar before being used. NOT EncodeURI or urlencode.

eg to redirect to:
https://SERVER:6443/files/folder/war/file.html?q[STATUS]=NEW&q[LCOD]=BOB

5

https://server:6443/diagnostics/?encodeString=PASSWORDTOENCODE
https://server:6443/login
https://server:6443/login/?silent=true
https://server:6443/login/?redir=http://redir.to/url

The correct url would be:
https://SERVER:6443/login/?redir=http%3A%2F%2F1server%3A6400%2Ffiles%2F
war%2Ffile.html%3Fq%5BSTATUS%5D%3DNEW%26q%5BLCOD%5D%3DBOB

Return Values

Docstore uses the HTTP Response Status Code to indicate success or failure. A return
value of 200 to 299 indicates success, any other value indicates a failure.
An error description is returned in the HTML that is returned in the HTTP Response body.
The description can be retrieved using the xpath query:

selectSingleNode("//*[@id='statusDescription']")

Example Success Response

Example Failure Response

6

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

JSON Output

CHTTPD defaults to outputting XML but can be switched to JSON output by setting the
Content-Type to application/json or adding &contentType=json to the query parameters.

JSON sample:
{
 "cppd": {
​ "warehousing": {
 ​ "pick": {
 ​ "-id": "000000100",
 ​ "CONO01": "TN",
 ​ "ORTP01": "1",
 ​ "ORDN01": "0000001",
 ​ "DESN01": "0",
 ​ "USER01": "KIM",
 ​ "PSTS01": "C",
 ​ "PSTD01": "2017-02-23",
 ​ "PSTT01": "14.41.00",
 ​ "PEND01": "2017-02-24",
 ​ "PENT01": "15.55.47",
 ​ "PCFD01": "0001-01-01",
 ​ "PCFT01": "00.00.00",
 ​ "NLAB01": "0",
 ​ "items": {
 ​ "item": [
 ​ {
 ​ "CONO02": "TN",
 ​ "ORTP02": "1",
 ​ "ORDN02": "0000001",
 ​ "DESN02": "0",
 ​ "BINN02": "BIN1",
 ​ "LOCD02": "SR",
 ​ "ORDL02": "1",
 ​ "CATN02": "PRODUCT1",
 ​ "OQTY02": "10.000",
 ​ "PQTY02": "75.000",
 ​ "PDES02": "New Car fo Dan"
 ​ },
 ​ {
 ​ "CONO02": "TN",
 ​ "ORTP02": "1",
 ​ "ORDN02": "0000001",
 ​ "DESN02": "0",
 ​ "BINN02": "BIN2",
 ​ "LOCD02": "SR",
 ​ "ORDL02": "2",
 ​ "CATN02": "PRODUCT2",
 ​ "OQTY02": ".500",
 ​ "PQTY02": ".000",
 ​ "PDES02": "New Car for Barny"
 ​ }
 ​]
 ​ }
 ​ }
​ }
 }
}

XML Sample:
<?xml version="1.0" encoding="utf-8"?>
<cppd><warehousing><pick id="000000100">
 <CONO01>TN</CONO01>
 <ORTP01>1</ORTP01>
 <ORDN01>0000001</ORDN01>

7

http://stackoverflow.com/questions/477816/what-is-the-correct-json-content-type

 <DESN01>0</DESN01>
 <USER01>KIM</USER01>
 <PSTS01>C</PSTS01>
 <PSTD01>2017-02-23</PSTD01>
 <PSTT01>14.41.00</PSTT01>
 <PEND01>2017-02-24</PEND01>
 <PENT01>15.55.47</PENT01>
 <PCFD01>0001-01-01</PCFD01>
 <PCFT01>00.00.00</PCFT01>
 <NLAB01>0</NLAB01>
<items>

<item>
 <CONO02>TN</CONO02>
 <ORTP02>1</ORTP02>
 <ORDN02>0000001</ORDN02>
 <DESN02>0</DESN02>
 <BINN02>BIN1</BINN02>
 <LOCD02>SR</LOCD02>
 <ORDL02>1</ORDL02>
 <CATN02>PRODUCT1</CATN02>
 <OQTY02>10.000</OQTY02>
 <PQTY02>75.000</PQTY02>
 <PDES02>New Car fo Dan</PDES02>
</item>
<item>
 <CONO02>TN</CONO02>
 <ORTP02>1</ORTP02>
 <ORDN02>0000001</ORDN02>
 <DESN02>0</DESN02>
 <BINN02>BIN2</BINN02>
 <LOCD02>SR</LOCD02>
 <ORDL02>2</ORDL02>
 <CATN02>PRODUCT2</CATN02>
 <OQTY02>.500</OQTY02>
 <PQTY02>.000</PQTY02>
 <PDES02>New Car for Barny</PDES02>
</item>

</items>
</pick></warehousing></cppd>

8

Interface URLs

Docstore Homepage

https://SERVER:6443/docStore/

The Docstore homepage.

Docstore Log

https://SERVER:6443/docStore/log/

Lists the most recent submissions to the Docstore along with the outcomes.

9

Docstore Document Store List

https://SERVER:6443/docStore/store/

Lists all the document stores in this Docstore.

Creating a Docstore

Parameters Description

docStoreName The name of the Docstore

docStoreLibrary The IBM i Library for the Docstore (Max: 10 Chars)

docStoreDescription a Description

The xhtml response would be like the sample output below:

10

Individual Document Store Homepage

https://SERVER:6443/docStore/store/Docstore%20Demo/

Lists the main attributes of this document Store. When viewed in a web browser, this is
the url for the main search page for this document Store.

11

Document Store Keys

https://SERVER:6443/docStore/store/Docstore%20Demo/key/

Lists all the Docstore Keys for this document Store.

Creating a Docstore Key

https://SERVER:6443/config/docStore/store/Docstore%20Demo/key/
This is the URL used to submit a document to the Docstore. The http method must be
POST unless treatGetAsPost=true

Parameters Description

keyName The name of the Key (must begin with an alpha character)

keyDescription a Description

keyType The key type (See: key types)

keySize The key size

keyScale The key scale

The xhtml response would be like the sample output below:

12

Document Store Key

https://SERVER:6443/config/docStore/store/Docstore%20Demo/key/KEYN
AME/

returns information about a specific key

Document Store Key values

https://SERVER:6443/config/docStore/store/Docstore%20Demo/key/KEYN
AME/values/

Filter using the Query Commands
sort using Sort order
Supports pagination
keyValues=docID will return the document ID associated with each key value
distinct=true will return only unique values (unique across both value and docID if docID
is specified)

13

Document Store Document Types

https://SERVER:6443/docStore/store/Docstore%20Demo/docType/

Lists all the Document Types for this document Store.

Creating a Docstore Document Type

https://SERVER:6443/config/docStore/store/Docstore%20Demo/docType/
This is the URL used to create a Document Type. The http method must be POST unless
treatGetAsPost=true
Parameters Description

docTypeName The name of the Document Type

docTypeDescription a Description

defaultDocTypeRootFolder TRUE/FALSE (Default: TRUE)

docTypeRootFolder (Only required if defaultDocTypeRootFolder
is FALSE)

docTypeAutoName TRUE/FALSE (Default: FALSE)

hideUnauthorisedDocs TRUE/FALSE (Default: FALSE)

docTypeDuplicateHandling OVERWRITE/VERSION (Default:
OVERWRITE)

docTypeLifeSpan The lifespan of the document

docTypeDefaultAuthorisationList The default authorisation list

docTypeProxyAuthObjectPath The proxy auth object path

docTypeDocHandlingUsername The document handling username

14

The xhtml response would be like the sample output below:

15

Document Store DocType Keys

https://SERVER:6443/docStore/store/Docstore%20Demo/docTypeKey/

Describes which Docstore Keys are assigned to which Document Types. Just for
assistance it also duplicates the output of the previous two urls and lists all the keys and
document types.

16

Document Store Document Type Homepage

https://SERVER:6443/docStore/store/Docstore%20Demo/docType/Purchas
e%20Orders/

Lists the main attributes of this Document Type. When viewed in a web browser, this is
the url for the main search page for this Document Type.

17

Document Store Document Type Keys

https://SERVER:6443/docStore/store/Docstore%20Demo/docType/Purchase%20Or
ders/docTypeKey/

Describes the Docstore Keys that are assigned to this Document Type.

Associating a key with a DocType

https://SERVER:6443/config/docStore/store/Docstore%20Demo/docType/
Purchase%20Orders/docTypeKey/
This is the URL used to associate a Docstore Key with a DocType. The http method must
be POST unless treatGetAsPost=true

Parameters Description

keyName The name of the key to associate with the docType

keyRequired TRUE/FALSE (Default: FALSE)

keyUnique TRUE/FALSE (Default: FALSE)

The xml response would be like the sample output below:

18

Document Store Document List

https://SERVER:6443/docStore/store/Docstore%20Demo/document/

Lists all the documents in this document store – use the query string to filter the results
returned. Also accepts document submissions.

19

Query String Options

The query string defines the filters to apply to the document list. It follows url and takes
the form:

?a[bbbbbb]=cccccc
Where:
​ a = query command (see below for query command types)
​ b = key name
​ c = filter value

Multiple filters can be specified, separated by an ampersand (&):

?a[bbbbbb]=cccccc&d[eeeeee]=ffffff
E.g.
https://SERVER:6443/docStore/store/store1/document/?q[bbbbbb]=cccc
cc&q[dddddd]=eeeeee
Will return a list of documents which have the value ‘cccccc’ in key ‘bbbbbb’ and the
value ‘eeeeee’ in key ‘dddddd’

20

Query Command Types

q – Exact Match

https://SERVER:6443/docStore/store/store1/document/?q[xxxxx]=yyyyy
which will return all documents which have the value yyyyy in the key xxxxx.

(SQL WHERE xxxxx='yyyyy')

Q – Exact String Match, Case Insensitive

https://SERVER:6443/docStore/store/store1/document/?Q[xxxxx]=yyyyy​
This will return all documents which have the value yyyyy (in any case) in the key xxxxx.

(SQL WHERE UCASE(xxxxx)='YYYYY')​

l – Containing String Match

https://SERVER:6443/docStore/store/store1/document/?L[xxxxx]=yyyyy​
This will return all documents which have the value yyyyy anywhere in the key xxxxx

(SQL xxxxx LIKE '%YYYYY%')

L – Containing String Match, Case Insensitive

https://SERVER:6443/docStore/store/store1/document/?L[xxxxx]=yyyyy​
This will return all documents which have the value yyyyy (in any case) anywhere in the
key xxxxx

(SQL UCASE(xxxxx) LIKE '%YYYYY%')
Note: The LIKE only works for text keys (CHAR or VARCHAR). All other key types require
an exact match.

S - Suggestion match

https://SERVER:6443/docStore/store/store1/document/?S[xxxxx]=yyyyy​
Like the previous L query, this will return all documents which have the value yyyyy (in
any case) anywhere in the key xxxxx

(SQL UCASE(xxxxx) LIKE '%YYYYY%')
It differs in that the suggestion query will match against numbers and dates as well as
text keys. For example, the query S[KEY]=2 will match against numbers and dates
containing a 2.

21

Range Queries

For Date and Numeric fields, it is possible to match a range of values:
https://SERVER:6443/docStore/store/Docstore%20Demo/document/?q[xxx
xx]=2010-12-01%20to%202010-12-25​
This will return all documents which have a date between 1st and 25th december 2010
in the key xxxxx

(SQL xxxxx BETWEEN ‘2010-12-01%20’ and ‘202010-12-25’)

https://SERVER:6443/docStore/store/Docstore%20Demo/document/?q[xxx
xx]=0%20to%2099​
This will return all documents which have a value between 0 and 99 in the key xxxxx

(SQL xxxxx BETWEEN 0 and 99)

Query Key Names

Key Name Description Examples
All Docstore Key names All the Keys that have

been defined in the
Docstore

q[INVNUM]=1043125
return documents with a value of 1043125 for the
key INVNUM
The defined keys are listed at:
http://SERVER:6443/config/docStore/store/STOREN
AME/docTypeKey/

docDescription document Description

docType document Type​ L[docType]=invoice ​
(All documents that have a document type
containing the word ‘invoice’)

docTypeID document Type ID

docID document ID q[docID]=854&q[docID]=800

docPath file path​ L[docPath]=QNTC (All documents stored on QNTC)

docFileName File Name

docOriginalFileName Original File Name L[docOriginalFileName]=file.PDF

docMimeType Mime Type q[docMimeType]=jpg&q[docMimeType]=pdf

docCreator Document Creator Q[docCreator]=dave

docTimeAdded q[docTimeAdded]=2016-01-01 00:00:00 to
2017-01-01 00:00:00
q[docTimeAdded]=2016-09-28 14:20:00 to
2016-09-28 14:30:00

docTimeSuperceded Document superceded

docTimeUpdated

docTimeAccessed

docAccessCount docAccessCount q[docAccessCount]=100 to 100000

docAutList File Authorisation List

docAutPublic File Public Authority l[docAutPublic]=W (Find all public writable files)
q[docAutPublic]=*RWX

22

23

Sort Key and Sort Order

sortKey=KEYNAME The Key name to sort the results by (Default is
docTimeAdded)

sortOrder=ASC or
DESC

Sort Ascending, or Sort Descending (Default is DESC)

E.g.
https://SERVER:6443/docStore/store/store1/document/?q[bbbbbb]=cccc
cc&q[dddddd]=eeeeee&sortKey=dddddd&sortOrder=ASC
Will return the records sorted by key ‘dddddd’ with the lowest values first
Note that only records that have a value for key ‘dddddd’ will be returned.

Pagination

Because of the large number of possible records that could be returned, only a subset is
returned. By default the first 20 records are returned, but that can be adjusted using the
start and count keys:

start=1
​

The index of the first result to return. The default of 1 is used if no value is
provided.

count=20 The number of results to return. The default of 20 is used if no value is
provided

E.g.
https://SERVER:6443/docStore/store/store1/document/?q[bbbbbb]=cccc
cc&q[dddddd]=eeeeee&start=21&count=50
Will return the 21st to 70th records

Alternative Data return format

It is possible to return all the documents that match the query parameters in a zip
archive. This can be achieved by setting the Content-Type to application/zip in the http
headers or by adding the following to the query string:

contentType=zip

E.g.
https://SERVER:6443/docStore/store/store1/document/?q[bbbbbb]=cccc
cc&q[dddddd]=eeeeee&contentType=zip
This request will return a zip archive containing all the documents that have a value
‘cccccc’ in key ‘bbbbbb’ and the value ‘eeeeee’ in key ‘dddddd’. Well, the first 20

24

Additional Key Values to return

It is possible to return addition key values in addition to the default metadata that
Docstore returns by default by specifying the values parameter:
​ keys=bbbbbb,dddddd
E.g.
https://SERVER:6443/docStore/store/store1/document/?q[bbbbbb]=cccc
cc&q[dddddd]=eeeeee&keys=bbbbbb,dddddd
This request will return the default metadata plus the values for key bbbbbb and key
dddddd for each document, if set.

Default Metadata values returned (if present):

url
authorised
authorisedToDelete
docID
docTypeID
docPath
docFileName
docOriginalFileName
docMimeType
docCreator
docTimeAdded
docTimeUpdated
docTimeAccessed
docAccessCount
docDescription
docAutList
docAutPublic
docTypeProxyAuthObjectPath
docTypeHideUnauthorisedDocs
docTypeAutList

Redirect to first document returned - ifl

It may be desirable for the request to be redirected to the url of the first returned
document rather than returning the result list xml. This can be achieved by adding the
following to the query string:

Ifl=true
(in fact ifl=anythingatall or ifl=false will have the same effect. That is, if the ifl parameter
is present, the redirect will be activated)

For example, when querying by Invoice number, there should only be one document
returned. Showing a document list containing just that one document would be less
efficient than redirecting the query and displaying the document immediately.

​

25

E.g.
https://SERVER:6443/docStore/store/store1/document/?q[bbbbbb]=cccc
cc&q[dddddd]=eeeeee&ifl=true
This request will be redirected to the url of the first document that has a value ‘cccccc’ in
key ‘bbbbbb’ and the value ‘eeeeee’ in key ‘dddddd’.

(Note: ifl = I’m Feeling Lucky)

Creating a Document

This is the URL used to submit a document to the Docstore. The http method must be
POST unless treatGetAsPost=true

Parameters Description

document type file, specifies the document data.

description description for the document (Max: 1024 chars)

docType
docTypeID

One or the other is required

[keyname] The values for the key. Multiple values can be submitted for each
key, but only unique values will be stored.

PARMxx to
PARM20

Any additional parameters (for description entity replacement)

authorityOwner

authorityPublic

authorisationList

A sample html form that would submit a document to the Docstore. The xml response
would be like the sample output below:

26

27

Document Store Document

https://SERVER:6443/docStore/store/Docstore%20Demo/document/[docID]/
This is the url of the data contained in the stored document. A GET call to this url will
return the document itself, a PDF file for example.

Delete

A DELETE http request or a POST specifying treatRequestAsDelete=true will delete the
document if the user has the required authority.

Update

This is the URL used to update the attributes of the document. The http method must be
POST unless
treatGetAsPost=true

Parameters
authorityOwner
authorityPublic
authorisationList
originalFileName
description
ANY KEY NAME

Only parameters that need to be changed need to be submitted. If a parameter is not
specified, its value will not be changed.

Only unique key values are stored.

If a key is specified with a blank value, all of its values will be deleted.

If the key type is not comparable (Float, Real, Double) then the existing key values will be
deleted and the new values inserted. This may have an impact on any Triggers that are
monitoring for an UPDATE.

Example:
https://SERVER:6443/docStore/store/[STORENAME]/document/[docID]/?T
EST1=2011-01-04&TEST1=2011-01-05&TEST2=3&TEST3=&description=A%20be
tter%20Test%20documento

This would update/set two values for Key TEST1, update/set one value for key TEST2 and
remove all values for key TEST3. Any values for other keys would be left alone. It would
also set the document description to “A better Test document”

28

Document Store Document Metadata

https://SERVER:6443/docStore/store/Docstore%20Demo/document/[docID]/meta
/

Lists all the information known about this document.

29

Document Store Document Keys/Values Data

https://SERVER:6443/docStore/store/Docstore%20Demo/document/[docID]/key/

GET: ​ ​ Lists all the key/value pairs for this document.
POST: ​​ updates the key/value pairs for this document
Parameters:​ [keyName]=[keyValue]

Notes: ​
Multiple values can be specified for a key

Eg: [keyName]=keyValue1& [keyName]=keyValue2
v4.30 and above: existing values are updated, excess values removed, additional values
added except for key types that cannot be reliably compared (REAL and DOUBLE) where
all existing values will be removed before the new values are added.
v2.94 and above: existing values are updated, excess values removed, additional values
added.
Pre v2.94: All existing values will be removed before the new values are added
​
To delete all values for a key, specify it with a blank value

Eg: [keyName]=
Authority: The user must have Write authority to the document

30

Document Store Document Key/Value Data

https://SERVER:6443/docStore/store/Docstore%20Demo/document/[docID
]/key/[keyName]

GET: ​ Returns information about this key for this document
POST: ​updates this key for this document
​ Parameters: keyValue=[keyValue]
​ Notes: ​Multiple values can be specified for a key

E.g: keyValue=keyValue1& keyValue =keyValue2
Any existing values for the key will updated then any additional keys added. If
there were more key values before, then the surplus will be deleted.

​ To delete all values for the key, specify it with a blank value
​ ​ E.g: keyValue=
​ Authority: The user must have Write authority to the document

Restart the Web Service

POST to http://localhost:6400/config/?restartServer=true
Note, this will only restart the web service, not the CPPD subsystem.

31

Appendix

Encoding and Decoding Sample Code

percent encoding

in C#:

System.Uri.EscapeDataString(“Cobwebb Communications=&”);

System.Uri.UnescapeDataString(“Cobwebb%20Communications%3d%26”

);

In Java:
// * Utility class for JavaScript compatible UTF-8 encoding and decoding.

//http://stackoverflow.com/questions/607176/java-equivalent-to-javascripts-encodeur
icomponent-that-produces-identical-outpu
 public static String encodeURIComponent(String s)
 {
 ​ String result = null;

 ​ try
 ​ {
 ​ ​ result = URLEncoder.encode(s, "UTF-8")
 ​ ​ ​ ​ .replaceAll("\\+", "%20")
 ​ ​ ​ ​ .replaceAll("\\%21", "!")
 ​ ​ ​ ​ .replaceAll("\\%27", "'")
 ​ ​ ​ ​ .replaceAll("\\%28", "(")
 ​ ​ ​ ​ .replaceAll("\\%29", ")")
 ​ ​ ​ ​ .replaceAll("\\%7E", "~");
 ​ }

 ​ // This exception should never occur.
 ​ catch (UnsupportedEncodingException e)
 ​ {
 ​ ​ result = s;
 ​ }

 ​ return result;
 }

 public static String decodeURIComponent(String s)
 {
 ​ if (s == null)
 ​ {
 ​ ​ return null;
 ​ }

 ​ String result = null;

 ​ try
 ​ {
 ​ ​ result = URLDecoder.decode(s, "UTF-8");
 ​ }

 ​ // This exception should never occur.
 ​ catch (UnsupportedEncodingException e)
 ​ {
 ​ ​ result = s;
 ​ }

 ​ return result;
 }

32

http://en.wikipedia.org/wiki%2FPercent-encoding

Key Types

SMALLINT
INTEGER
BIGINT
CHAR
VARCHAR
TIMESTAMP
DATE
TIME
FLOAT
REAL
DOUBLE
DECIMAL
NUMERIC

Automating Docstore creation using scripts

It's possible to call Docstore URLs to create Docstores, Document Types, Keys and
Document Type Keys. It should be possible to create a script to automate the creation of
any Docstore setup.

This video walks through how this can be done using the excellent Postman app.

Get Postman App from here:
https://www.postman.com/

Download and Import this collection into Postman:
DocStore API Tests v3.postman_collection.json

Docstore Limits

Each Docstore can hold a maximum of 2,147,483,647 documents.
This is because the DocID is a 32 bit signed INTEGER which is incremented for each
docID. 1,2,3...2,147,483,647 - after that, there would be no more valid DocID values.

Tokens

The Docstore web service (chttpd) has been enhanced (in v4.75 and above) to validate a
user when IBM i tokens are provided as an alternative to passwords.

Option 1: pass in username and password (user=DANIEL&password=******)
Option 2: pass in username and an IBM i token. (user=DANIEL&token=ABCDEFG…)

33

https://youtu.be/ffgAPseaL9M
https://www.postman.com/
https://drive.google.com/open?id=1L6-1W3bCOlho3LQFdGQkGf5K3meMUrJ5

If Infor System i Workspace Anywhere has been configured to use the IBM i Token
Generator then it is possible to get it to pass the username and IBM i token when opening a
docstore link. This means the user is transparently signed into Docstore.

Configuring the IBM i Token Generator

(Note: The latest versions of all these guides can be found on Knowledge Base article
1963350 on the Infor Support Portal.)

System i Workspace AnyWhere - Installation & Admin Guide.pdf
P162: Installing and Configuring the IBM i Token Generator - Walks through setting up the
generator.

System i Workspace AnyWhere - Product Guide.pdf
P155: Chapter 6 Substitution parameters
describes the %user% and %pass% substitution values that can be used when constructing
a new tab url.

“If Use System i user token for Passwords is enabled for the current Infor System i
Workspace AnyWhere Profile, then the %pass% value will contain an IBM i Profile
Token, otherwise it will contain an unencrypted password.”

34

https://drive.google.com/open?id=1fZ58FL1IZLtjgENToDN87o_3fXMik588&usp=drive_copy
https://drive.google.com/open?id=11RDxBwFZ5H6cJ13_7EsHmvELSSa54Oea&usp=drive_copy

	Docstore URL Interface Specification
	Changes
	
	Introduction
	HTTP Methods
	DocID replacement
	HTTPS
	Authentication
	The username and password can be provided using HTTP authentication.
	The username and token can be set in the cookies:
	The username and password can be set in the cookies:
	The username and token can be passed in the URL
	The username and password can be passed in the URL

	Login URL
	Options - silent
	Options - redir

	Return Values
	
	Example Success Response
	Example Failure Response

	JSON Output

	
	Interface URLs
	Docstore Homepage
	Docstore Log
	Docstore Document Store List
	Creating a Docstore

	
	Individual Document Store Homepage
	Document Store Keys
	Creating a Docstore Key

	
	Document Store Key
	Document Store Key values
	
	Document Store Document Types
	Creating a Docstore Document Type

	Document Store DocType Keys
	

	Document Store Document Type Homepage
	Document Store Document Type Keys
	Associating a key with a DocType

	
	Document Store Document List
	Query String Options
	
	Query Command Types
	q – Exact Match
	Q – Exact String Match, Case Insensitive
	l – Containing String Match
	L – Containing String Match, Case Insensitive
	S - Suggestion match

	
	Range Queries
	Query Key Names
	
	Sort Key and Sort Order
	Pagination
	Alternative Data return format
	
	Additional Key Values to return
	Redirect to first document returned - ifl
	Creating a Document

	Document Store Document
	Delete
	Update

	Document Store Document Metadata
	

	Document Store Document Keys/Values Data
	Document Store Document Key/Value Data
	Restart the Web Service

	
	Appendix
	Encoding and Decoding Sample Code
	in C#:
	In Java:

	Key Types
	Automating Docstore creation using scripts
	Docstore Limits
	Tokens
	Configuring the IBM i Token Generator

